|
- ---------------------------------------------------------------------
- -- TITLE: Memory Controller
- -- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
- -- DATE CREATED: 1/31/01
- -- FILENAME: mem_ctrl.vhd
- -- PROJECT: Plasma CPU core
- -- COPYRIGHT: Software placed into the public domain by the author.
- -- Software 'as is' without warranty. Author liable for nothing.
- -- DESCRIPTION:
- -- Memory controller for the Plasma CPU.
- -- Supports Big or Little Endian mode.
- ---------------------------------------------------------------------
- library ieee;
- use ieee.std_logic_1164.all;
- use work.mlite_pack.all;
-
- entity mem_ctrl is
- port(clk : in std_logic;
- reset_in : in std_logic;
- pause_in : in std_logic;
- nullify_op : in std_logic;
- address_pc : in std_logic_vector(31 downto 2);
- opcode_out : out std_logic_vector(31 downto 0);
-
- address_in : in std_logic_vector(31 downto 0);
- mem_source : in mem_source_type;
- data_write : in std_logic_vector(31 downto 0);
- data_read : out std_logic_vector(31 downto 0);
- pause_out : out std_logic;
-
- address_next : out std_logic_vector(31 downto 2);
- byte_we_next : out std_logic_vector(3 downto 0);
-
- address : out std_logic_vector(31 downto 2);
- byte_we : out std_logic_vector(3 downto 0);
- data_w : out std_logic_vector(31 downto 0);
- data_r : in std_logic_vector(31 downto 0));
- end; --entity mem_ctrl
-
- architecture logic of mem_ctrl is
- --"00" = big_endian; "11" = little_endian
- constant ENDIAN_MODE : std_logic_vector(1 downto 0) := "00";
- signal opcode_reg : std_logic_vector(31 downto 0);
- signal next_opcode_reg : std_logic_vector(31 downto 0);
- signal address_reg : std_logic_vector(31 downto 2);
- signal byte_we_reg : std_logic_vector(3 downto 0);
-
- signal mem_state_reg : std_logic;
- constant STATE_ADDR : std_logic := '0';
- constant STATE_ACCESS : std_logic := '1';
-
- begin
-
- mem_proc: process(clk, reset_in, pause_in, nullify_op,
- address_pc, address_in, mem_source, data_write,
- data_r, opcode_reg, next_opcode_reg, mem_state_reg,
- address_reg, byte_we_reg)
- variable address_var : std_logic_vector(31 downto 2);
- variable data_read_var : std_logic_vector(31 downto 0);
- variable data_write_var : std_logic_vector(31 downto 0);
- variable opcode_next : std_logic_vector(31 downto 0);
- variable byte_we_var : std_logic_vector(3 downto 0);
- variable mem_state_next : std_logic;
- variable pause_var : std_logic;
- variable bits : std_logic_vector(1 downto 0);
- begin
- byte_we_var := "0000";
- pause_var := '0';
- data_read_var := ZERO;
- data_write_var := ZERO;
- mem_state_next := mem_state_reg;
- opcode_next := opcode_reg;
-
- case mem_source is
- when MEM_READ32 =>
- data_read_var := data_r;
-
- when MEM_READ16 | MEM_READ16S =>
- if address_in(1) = ENDIAN_MODE(1) then
- data_read_var(15 downto 0) := data_r(31 downto 16);
- else
- data_read_var(15 downto 0) := data_r(15 downto 0);
- end if;
- if mem_source = MEM_READ16 or data_read_var(15) = '0' then
- data_read_var(31 downto 16) := ZERO(31 downto 16);
- else
- data_read_var(31 downto 16) := ONES(31 downto 16);
- end if;
-
- when MEM_READ8 | MEM_READ8S =>
- bits := address_in(1 downto 0) xor ENDIAN_MODE;
- case bits is
- when "00" => data_read_var(7 downto 0) := data_r(31 downto 24);
- when "01" => data_read_var(7 downto 0) := data_r(23 downto 16);
- when "10" => data_read_var(7 downto 0) := data_r(15 downto 8);
- when others => data_read_var(7 downto 0) := data_r(7 downto 0);
- end case;
- if mem_source = MEM_READ8 or data_read_var(7) = '0' then
- data_read_var(31 downto 8) := ZERO(31 downto 8);
- else
- data_read_var(31 downto 8) := ONES(31 downto 8);
- end if;
-
- when MEM_WRITE32 =>
- data_write_var := data_write;
- byte_we_var := "1111";
-
- when MEM_WRITE16 =>
- data_write_var := data_write(15 downto 0) & data_write(15 downto 0);
- if address_in(1) = ENDIAN_MODE(1) then
- byte_we_var := "1100";
- else
- byte_we_var := "0011";
- end if;
-
- when MEM_WRITE8 =>
- data_write_var := data_write(7 downto 0) & data_write(7 downto 0) &
- data_write(7 downto 0) & data_write(7 downto 0);
- bits := address_in(1 downto 0) xor ENDIAN_MODE;
- case bits is
- when "00" =>
- byte_we_var := "1000";
- when "01" =>
- byte_we_var := "0100";
- when "10" =>
- byte_we_var := "0010";
- when others =>
- byte_we_var := "0001";
- end case;
-
- when others =>
- end case;
-
- if mem_source = MEM_FETCH then --opcode fetch
- address_var := address_pc;
- opcode_next := data_r;
- mem_state_next := STATE_ADDR;
- else
- if mem_state_reg = STATE_ADDR then
- if pause_in = '0' then
- address_var := address_in(31 downto 2);
- mem_state_next := STATE_ACCESS;
- pause_var := '1';
- else
- address_var := address_pc;
- byte_we_var := "0000";
- end if;
- else --STATE_ACCESS
- if pause_in = '0' then
- address_var := address_pc;
- opcode_next := next_opcode_reg;
- mem_state_next := STATE_ADDR;
- byte_we_var := "0000";
- else
- address_var := address_in(31 downto 2);
- byte_we_var := "0000";
- end if;
- end if;
- end if;
-
- if nullify_op = '1' and pause_in = '0' then
- opcode_next := ZERO; --NOP after beql
- end if;
-
- if reset_in = '1' then
- mem_state_reg <= STATE_ADDR;
- opcode_reg <= ZERO;
- next_opcode_reg <= ZERO;
- address_reg <= ZERO(31 downto 2);
- byte_we_reg <= "0000";
- elsif rising_edge(clk) then
- if pause_in = '0' then
- address_reg <= address_var;
- byte_we_reg <= byte_we_var;
- mem_state_reg <= mem_state_next;
- opcode_reg <= opcode_next;
- if mem_state_reg = STATE_ADDR then
- next_opcode_reg <= data_r;
- end if;
- end if;
- end if;
-
- opcode_out <= opcode_reg;
- data_read <= data_read_var;
- pause_out <= pause_var;
-
- address_next <= address_var;
- byte_we_next <= byte_we_var;
-
- address <= address_reg;
- byte_we <= byte_we_reg;
- data_w <= data_write_var;
-
- end process; --data_proc
-
- end; --architecture logic
|