|
- ---------------------------------------------------------------------
- -- TITLE: Register Bank
- -- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
- -- DATE CREATED: 2/2/01
- -- FILENAME: reg_bank.vhd
- -- PROJECT: Plasma CPU core
- -- COPYRIGHT: Software placed into the public domain by the author.
- -- Software 'as is' without warranty. Author liable for nothing.
- -- DESCRIPTION:
- -- Implements a register bank with 32 registers that are 32-bits wide.
- -- There are two read-ports and one write port.
- ---------------------------------------------------------------------
- library ieee;
- use ieee.std_logic_1164.all;
- use ieee.std_logic_unsigned.all;
- use work.mlite_pack.all;
-
- entity reg_bank is
- generic(memory_type : string := "XILINX_16X");
- port(clk : in std_logic;
- reset_in : in std_logic;
- pause : in std_logic;
- rs_index : in std_logic_vector(5 downto 0);
- rt_index : in std_logic_vector(5 downto 0);
- rd_index : in std_logic_vector(5 downto 0);
- reg_source_out : out std_logic_vector(31 downto 0);
- reg_target_out : out std_logic_vector(31 downto 0);
- reg_dest_new : in std_logic_vector(31 downto 0);
- intr_enable : out std_logic);
- end; --entity reg_bank
-
-
- --------------------------------------------------------------------
- -- The ram_block architecture attempts to use TWO dual-port memories.
- -- Different FPGAs and ASICs need different implementations.
- -- Choose one of the RAM implementations below.
- -- I need feedback on this section!
- --------------------------------------------------------------------
- architecture ram_block of reg_bank is
- signal intr_enable_reg : std_logic;
- type ram_type is array(31 downto 0) of std_logic_vector(31 downto 0);
-
- --controls access to dual-port memories
- signal addr_read1, addr_read2 : std_logic_vector(4 downto 0);
- signal addr_write : std_logic_vector(4 downto 0);
- signal data_out1, data_out2 : std_logic_vector(31 downto 0);
- signal write_enable : std_logic;
-
- begin
-
- reg_proc: process(clk, rs_index, rt_index, rd_index, reg_dest_new,
- intr_enable_reg, data_out1, data_out2, reset_in, pause)
- begin
- --setup for first dual-port memory
- if rs_index = "101110" then --reg_epc CP0 14
- addr_read1 <= "00000";
- else
- addr_read1 <= rs_index(4 downto 0);
- end if;
- case rs_index is
- when "000000" => reg_source_out <= ZERO;
- when "101100" => reg_source_out <= ZERO(31 downto 1) & intr_enable_reg;
- --interrupt vector address = 0x3c
- when "111111" => reg_source_out <= ZERO(31 downto 8) & "00111100";
- when others => reg_source_out <= data_out1;
- end case;
-
- --setup for second dual-port memory
- addr_read2 <= rt_index(4 downto 0);
- case rt_index is
- when "000000" => reg_target_out <= ZERO;
- when others => reg_target_out <= data_out2;
- end case;
-
- --setup write port for both dual-port memories
- if rd_index /= "000000" and rd_index /= "101100" and pause = '0' then
- write_enable <= '1';
- else
- write_enable <= '0';
- end if;
- if rd_index = "101110" then --reg_epc CP0 14
- addr_write <= "00000";
- else
- addr_write <= rd_index(4 downto 0);
- end if;
-
- if reset_in = '1' then
- intr_enable_reg <= '0';
- elsif rising_edge(clk) then
- if rd_index = "101110" then --reg_epc CP0 14
- intr_enable_reg <= '0'; --disable interrupts
- elsif rd_index = "101100" then
- intr_enable_reg <= reg_dest_new(0);
- end if;
- end if;
-
- intr_enable <= intr_enable_reg;
- end process;
-
-
- --------------------------------------------------------------
- ---- Pick only ONE of the dual-port RAM implementations below!
- --------------------------------------------------------------
-
- -- Option #1
- -- One tri-port RAM, two read-ports, one write-port
- -- 32 registers 32-bits wide
- tri_port_mem:
- if memory_type = "TRI_PORT_X" generate
- ram_proc: process(clk, addr_read1, addr_read2,
- addr_write, reg_dest_new, write_enable)
- variable tri_port_ram : ram_type;
- begin
- data_out1 <= tri_port_ram(conv_integer(addr_read1));
- data_out2 <= tri_port_ram(conv_integer(addr_read2));
- if rising_edge(clk) then
- if write_enable = '1' then
- tri_port_ram(conv_integer(addr_write)) := reg_dest_new;
- end if;
- end if;
- end process;
- end generate; --tri_port_mem
-
-
- -- Option #2
- -- Two dual-port RAMs, each with one read-port and one write-port
- dual_port_mem:
- if memory_type = "DUAL_PORT_" generate
- ram_proc2: process(clk, addr_read1, addr_read2,
- addr_write, reg_dest_new, write_enable)
- variable dual_port_ram1 : ram_type;
- variable dual_port_ram2 : ram_type;
- begin
- data_out1 <= dual_port_ram1(conv_integer(addr_read1));
- data_out2 <= dual_port_ram2(conv_integer(addr_read2));
- if rising_edge(clk) then
- if write_enable = '1' then
- dual_port_ram1(conv_integer(addr_write)) := reg_dest_new;
- dual_port_ram2(conv_integer(addr_write)) := reg_dest_new;
- end if;
- end if;
- end process;
- end generate; --dual_port_mem
-
-
- -- Option #3
- -- RAM16X1D: 16 x 1 positive edge write, asynchronous read dual-port
- -- distributed RAM for all Xilinx FPGAs
- -- From library UNISIM; use UNISIM.vcomponents.all;
- xilinx_16x1d:
- if memory_type = "XILINX_16X" generate
- signal data_out1A, data_out1B : std_logic_vector(31 downto 0);
- signal data_out2A, data_out2B : std_logic_vector(31 downto 0);
- signal weA, weB : std_logic;
- begin
- weA <= write_enable and not addr_write(4); --lower 16 registers
- weB <= write_enable and addr_write(4); --upper 16 registers
-
- reg_loop: for i in 0 to 31 generate
- begin
- --Read port 1 lower 16 registers
- reg_bit1a : RAM16X1D
- port map (
- WCLK => clk, -- Port A write clock input
- WE => weA, -- Port A write enable input
- A0 => addr_write(0), -- Port A address[0] input bit
- A1 => addr_write(1), -- Port A address[1] input bit
- A2 => addr_write(2), -- Port A address[2] input bit
- A3 => addr_write(3), -- Port A address[3] input bit
- D => reg_dest_new(i), -- Port A 1-bit data input
- DPRA0 => addr_read1(0), -- Port B address[0] input bit
- DPRA1 => addr_read1(1), -- Port B address[1] input bit
- DPRA2 => addr_read1(2), -- Port B address[2] input bit
- DPRA3 => addr_read1(3), -- Port B address[3] input bit
- DPO => data_out1A(i), -- Port B 1-bit data output
- SPO => open -- Port A 1-bit data output
- );
- --Read port 1 upper 16 registers
- reg_bit1b : RAM16X1D
- port map (
- WCLK => clk, -- Port A write clock input
- WE => weB, -- Port A write enable input
- A0 => addr_write(0), -- Port A address[0] input bit
- A1 => addr_write(1), -- Port A address[1] input bit
- A2 => addr_write(2), -- Port A address[2] input bit
- A3 => addr_write(3), -- Port A address[3] input bit
- D => reg_dest_new(i), -- Port A 1-bit data input
- DPRA0 => addr_read1(0), -- Port B address[0] input bit
- DPRA1 => addr_read1(1), -- Port B address[1] input bit
- DPRA2 => addr_read1(2), -- Port B address[2] input bit
- DPRA3 => addr_read1(3), -- Port B address[3] input bit
- DPO => data_out1B(i), -- Port B 1-bit data output
- SPO => open -- Port A 1-bit data output
- );
- --Read port 2 lower 16 registers
- reg_bit2a : RAM16X1D
- port map (
- WCLK => clk, -- Port A write clock input
- WE => weA, -- Port A write enable input
- A0 => addr_write(0), -- Port A address[0] input bit
- A1 => addr_write(1), -- Port A address[1] input bit
- A2 => addr_write(2), -- Port A address[2] input bit
- A3 => addr_write(3), -- Port A address[3] input bit
- D => reg_dest_new(i), -- Port A 1-bit data input
- DPRA0 => addr_read2(0), -- Port B address[0] input bit
- DPRA1 => addr_read2(1), -- Port B address[1] input bit
- DPRA2 => addr_read2(2), -- Port B address[2] input bit
- DPRA3 => addr_read2(3), -- Port B address[3] input bit
- DPO => data_out2A(i), -- Port B 1-bit data output
- SPO => open -- Port A 1-bit data output
- );
- --Read port 2 upper 16 registers
- reg_bit2b : RAM16X1D
- port map (
- WCLK => clk, -- Port A write clock input
- WE => weB, -- Port A write enable input
- A0 => addr_write(0), -- Port A address[0] input bit
- A1 => addr_write(1), -- Port A address[1] input bit
- A2 => addr_write(2), -- Port A address[2] input bit
- A3 => addr_write(3), -- Port A address[3] input bit
- D => reg_dest_new(i), -- Port A 1-bit data input
- DPRA0 => addr_read2(0), -- Port B address[0] input bit
- DPRA1 => addr_read2(1), -- Port B address[1] input bit
- DPRA2 => addr_read2(2), -- Port B address[2] input bit
- DPRA3 => addr_read2(3), -- Port B address[3] input bit
- DPO => data_out2B(i), -- Port B 1-bit data output
- SPO => open -- Port A 1-bit data output
- );
- end generate; --reg_loop
-
- data_out1 <= data_out1A when addr_read1(4)='0' else data_out1B;
- data_out2 <= data_out2A when addr_read2(4)='0' else data_out2B;
- end generate; --xilinx_16x1d
-
-
- -- Option #4
- -- Altera LPM_RAM_DP
- -- Xilinx users may need to comment out this section!!!
- -- altera_mem:
- -- if memory_type = "ALTERA_LPM" generate
- -- signal clk_delayed : std_logic;
- -- signal addr_reg : std_logic_vector(4 downto 0);
- -- signal data_reg : std_logic_vector(31 downto 0);
- -- signal q1 : std_logic_vector(31 downto 0);
- -- signal q2 : std_logic_vector(31 downto 0);
- -- begin
- -- -- Altera dual port RAMs must have the addresses registered (sampled
- -- -- at the rising edge). This is very unfortunate.
- -- -- Therefore, the dual port RAM read clock must delayed so that
- -- -- the read address signal can be sent from the mem_ctrl block.
- -- -- This solution also delays the how fast the registers are read so the
- -- -- maximum clock speed is cut in half (12.5 MHz instead of 25 MHz).
- --
- -- clk_delayed <= not clk; --Could be delayed by 1/4 clock cycle instead
- -- dpram_bypass: process(clk, addr_write, reg_dest_new)
- -- begin
- -- if rising_edge(clk) and write_enable = '1' then
- -- addr_reg <= addr_write;
- -- data_reg <= reg_dest_new;
- -- end if;
- -- end process; --dpram_bypass
- --
- -- -- Bypass dpram if reading what was just written (Altera limitation)
- -- data_out1 <= q1 when addr_read1 /= addr_reg else data_reg;
- -- data_out2 <= q2 when addr_read2 /= addr_reg else data_reg;
- --
- -- lpm_ram_dp_component1 : lpm_ram_dp
- -- generic map (
- -- LPM_WIDTH => 32,
- -- LPM_WIDTHAD => 5,
- -- --LPM_NUMWORDS => 0,
- -- LPM_INDATA => "REGISTERED",
- -- LPM_OUTDATA => "UNREGISTERED",
- -- LPM_RDADDRESS_CONTROL => "REGISTERED",
- -- LPM_WRADDRESS_CONTROL => "REGISTERED",
- -- LPM_FILE => "UNUSED",
- -- LPM_TYPE => "LPM_RAM_DP",
- -- USE_EAB => "ON",
- -- INTENDED_DEVICE_FAMILY => "UNUSED",
- -- RDEN_USED => "FALSE",
- -- LPM_HINT => "UNUSED")
- -- port map (
- -- RDCLOCK => clk_delayed,
- -- RDCLKEN => '1',
- -- RDADDRESS => addr_read1,
- -- RDEN => '1',
- -- DATA => reg_dest_new,
- -- WRADDRESS => addr_write,
- -- WREN => write_enable,
- -- WRCLOCK => clk,
- -- WRCLKEN => '1',
- -- Q => q1);
- -- lpm_ram_dp_component2 : lpm_ram_dp
- -- generic map (
- -- LPM_WIDTH => 32,
- -- LPM_WIDTHAD => 5,
- -- --LPM_NUMWORDS => 0,
- -- LPM_INDATA => "REGISTERED",
- -- LPM_OUTDATA => "UNREGISTERED",
- -- LPM_RDADDRESS_CONTROL => "REGISTERED",
- -- LPM_WRADDRESS_CONTROL => "REGISTERED",
- -- LPM_FILE => "UNUSED",
- -- LPM_TYPE => "LPM_RAM_DP",
- -- USE_EAB => "ON",
- -- INTENDED_DEVICE_FAMILY => "UNUSED",
- -- RDEN_USED => "FALSE",
- -- LPM_HINT => "UNUSED")
- -- port map (
- -- RDCLOCK => clk_delayed,
- -- RDCLKEN => '1',
- -- RDADDRESS => addr_read2,
- -- RDEN => '1',
- -- DATA => reg_dest_new,
- -- WRADDRESS => addr_write,
- -- WREN => write_enable,
- -- WRCLOCK => clk,
- -- WRCLKEN => '1',
- -- Q => q2);
- -- end generate; --altera_mem
-
- end; --architecture ram_block
|